Merge Sort for Linked Lists

Posted in

Merge Sort for Linked Lists
vinaykhatri

Vinay Khatri
Last updated on September 8, 2024

    There are a plethora of sorting algorithms present for arrays like the bubble sort, insertion sort, selection sort, heap sort, merge sort, quick sort, and many more. But in the case of Linked Lists, the implementation of all the sorting algorithms is difficult. Heapsort is totally impossible for sorting the linked list.

    In this article, we will discuss how to apply the Merge Sort algorithm to sort the given linked list in ascending order.

    Given a singly linked list containing n number of nodes, sort the linked list in the ascending order using the merge sort sorting algorithm.

    Inputs:

    • 11-> 2 -> 4 -> 1 -> 9-> null
    • 1 -> null

    Outputs:

    • 1 -> 2 -> 4 -> 9 -> 11 -> null
    • 1 -> null

    Merge Sort Algorithm for Array’s data structure

    • Check for the condition start<end.
    • First of all, find the middle element of the array. Middle element is equal to the(start+(end-start)/2).
    • Recursively call the array for 0(start) to mid element(end) and mid+1(start) to length-1 of the array until start < end .
    • Call MergeSort (start ,mid ,end).
    • In MergeSort Function, sort the two halves for the array.

    The above algorithm is not suitable for the Linked List sorting because, in Linked List, we cannot access a particular node of the linked list in O(1). This is because of the non-contiguous memory allocation of the Linked List.

    On the other hand, arrays have contiguous memory allocation. We can easily find the middle element but in the case of the linked list, we have to use another algorithm i.e the Tortoise-Hare Algorithm.

    TORTOISE-HARE Algorithm

    • Iterate the Linked List using two pointers/references, one pointer is slow and the other pointer/reference is fast.
    • Update the slow pointer/reference by one node and the fast pointer/reference by two nodes.
    • Return the slow pointer/reference which is the middle node of the linked list.

    The rest of the steps to perform the merge sort in the linked list are the same with very few variations.

    Approach

    • Find the middle element of the Linked List using the TORTOISE-HARE algorithm.
    • Divide the element into two halves head and middle.next position of the linked list.
    • Recursively Divide the generated halves into another half till head or head.next becomes null.
    • Merge the two halves by sorting each node’s data.

    JAVA

    //Importing Libraries
    import java.util.*;
    import java.io.*;
    //Creating class Node
    class Node{
      int data; //Creating data element to be stored in the node of the linked list
      Node  next;//Creating next reference of the node in the linked list
      //Creating Constructor to initialize the data members
      public Node(int data){
          this.data=data;
          this.next=null;
      }
    }
    //Creating MergeLinkedList class
    class MergeLinkedList{
     static Node head;//Creating head reference of the linked list
     //Creating function to push the node a
     static void push(int data){
         //Checking the base condition
         if(head==null){
             //Creating head of the linked list
             head=new Node(data);
         }
         else{
             //Creating temporary reference of the  head
             Node temp=head;
             //Iterate the linked list
             while(temp.next!=null){
                 temp=temp.next;
             }
             //insert the node at the end of the linked  list
             temp.next=new Node(data);
         }
         
     }
     //Function to print the linked list   
     static void print(Node head){
         //Iterate the head of the linked list
         while(head!=null){
             //Print the node value of the linked list
             System.out.print(head.data+" ");
             //Update the head of the linked list
             head=head.next;
         }
     }
     //Function to get the middle element of the given linked list
     static Node Middle Element(Node head){
         //Checking the base condition
         if(head==null){
             //Return the head if the head is null
             return head;
         }
         //Creating two reference for the linked list
         //Slow Reference
         Node slow=head;
         //Fast Reference
         Node fast=head;
         //Iterate the Linked list using fast reference of the linked list
         while(fast.next!=null && fast.next.next!=null){
             //Update the slow pointer
             slow=slow.next;
             //Update the fast pointer
             fast=fast.next.next;
         }
         //Return the slow reference that contains the middle element of the linked list
         return slow;
     }
     //Function to sort the two halves of the linked list
     static Node sortedMerge(Node left,Node right){
         //Checking the base conditions
          if(left==null){
              return right;
          }
         
          if(right==null){
              return left;
          }
          //Creating a temporary reference to refer to to the sorted linked list
          Node result=null;
          //Checking if the left reference data is smaller than the right reference data
          if(left.data<=right.data){
              //Update the result reference 
              result=left;
              //Recursively call the left.next for next node
              result.next=sortedMerge(left.next, right);
          }
          else{
              //Update the result reference
              result=right;
               //Recursively call the left.next for next node
              result.next=sortedMerge(left, right.next);
          }
          //Return the sorted linked list
          return result;
    
     }
     //Function to perform the merge sort of the linked list
     static Node mergeSort(Node head){
         //Checking the base conditions
        if(head==null||head.next==null){
            return head;
        }
        //Getting the middle element
        Node firsthalf=Middleelement(head);
        //Creating second half of the linked list
        Node secondHalf=firsthalf.next;
        //Break the middle element reference
        firsthalf.next=null;
    
        //Recursively call the two halves of the linked list
        Node left=mergeSort(head);
        Node right=mergeSort(secondHalf);
        //call for the sorting
        Node sortedList=sortedMerge(left,right);
        //Return the complete sorting linked list
        return sortedList;
    
    
         
    
     }
        public static void main(String[] args) {
            //Creating object of merge linked list
            MergeLinkedList ob =new MergeLinkedList();
            //Creating first node of the linked list
            ob.push(15);
            //Creating second  node of the linked list
            ob.push(10);
            //Creating third node of the linked list
            ob.push(5);
             //Creating fourth node of the linked list
            ob.push(20);
            //Creating fifth node of the linked list
            ob.push(3);
            //Creating sixth node of the linked list
            ob.push(2);
            //Printing original linked list
            System.out.println("Printing Original Linked List");
            ob.print(head);
            //Creating new line
            System.out.println();
            //Call for sorting the linked list
            ob.head=mergeSort(ob.head);
            //Printing the sorted linked list
            System.out.println("Printing Sorted Linked List");
            ob.print(head);
            
            
        }
    }

    Output:

    Python

    #Creating Node class
    class Node:
        def __init__(self,data):
             self.data=data #Creating data of the node
             self.next=None #Creating next reference of the node of the linked list
    #Creating Linked List        
    class LinkedList:
        #Creating Linked List class constructor
        def __init__(self):
            self.head=None
        #Function to push the node in the linked list
    
        def push(self,data):
            #Checking the base condition
            if(self.head is None):
                #Creating First node of the linked list
                self.head=Node(data)
            else:
                #Creating temporary reference of the linked list
                temp=self.head
                #Iterate the Linked list
                while(temp.next is not None):
                     temp=temp.next
                #Insert the node at the end of the linked list      
                temp.next=Node(data)
        #Function to get the middle element of the linked list        
        def Middleelement(self,head):
            #Checking the base condition
            if(head is None):
                #Returning the head
                return head
            else:
                #Creating two reference 
                #Slow Reference
                slow=head
                #Fast Reference
                fast=head
                while(fast.next !=None and fast.next.next!=None):
                    #Update the Fast Reference by two steps
                    fast=fast.next.next
                    #Update the slow Reference by one step
                    slow=slow.next
                #Return the slow Reference
                    
                return slow
        #Function to Perform the merge sort        
        def MergeSort(self,head):
            #Checking the base condition
            if(head ==None or head.next == None):
                return head
            else:
                #Storing the middle of the Linked list
                First=self.Middleelement(head)
                #Creating Second part of the linked list
                second=First.next
                #Break the point of the first half to the second half
                First.next=None 
                #Perform MergeSort on the First half
                left=self.MergeSort(self.head)
                #Perform MergeSort on the Second half
                right=self.MergeSort(second)
                #Call function to sort the both halves
                SortedList=self.sort(First,second)
    
                return SortedList
        #Function to sort the two halves of the linked list        
        def sort(self,first,second):
            #Checking the base conditions
            if(first is None):
                return second
            if(second is None):
                return first
            #Creating Result reference    
            Result=None
            #Checking the  first node data of first part
            if(first.data<=second.data):
                Result=first
                #Recursively call sort() Method again
                Result.next=self.sort(first.next,second)
            else:
                Result=second
                #Recursively call sort() Method again for next element
                Result.next=self.sort(first,second.next)
            #Return the sorted linked list    
            return Result       
        #Function to print the linked list
        def print(self,head):
            #Creating reference of the linked list
            temp=head
            list_=[]
            #Iterate the linked list
            while(temp is not None):
                #Append the items of the linked list into the list_
                list_.append(temp.data)
                temp=temp.next
            #Print the list      
            print(list_)    
    #Creating List reference of the Linked List
    List=LinkedList()
    #Inserting node in the Single list
    List.push(11)
    List.push(2)
    List.push(1)
    #Printing the original linked list
    print("Original Linked List")
    List.print(List.head)    
    #Printing the Reversed Linked List
    print("Sorted Linked List")
    List.Head=List.MergeSort(List.head)
    
    List.print(List.Head)

    Output:

    C++

    //Importing all the required libraries
    #include
    #include
    #include<bits/stdc++.h>
    using namespace std;
    //Creating structure for the node of linked list
    struct Node{
    int data;//data to be stored to the node in the linked list
    
    Node*next;//next reference to the node in the linked list
    //Creating Constructor
    Node(int data){
    this->data=data; //Storing the data to the node
    this->next=nullptr;
    
    }
    };
     //Function to Transverse the Linked list
    void print(Node *head){
         //Checking if the Linked list is null or not
         Node *temp=head;
        if(temp==NULL){
            return;
        }
      //Transverse the Linked List
    while(temp!=NULL){
    cout<data<<" "; temp=temp->next;
    }
    
    }
    //Function to get the middle element of the given linked list
    Node* Middleelement(Node *head){
         //Checking the base condition
         if(head==NULL){
             //Return the head if the head is null
             return head;
         }
         //Creating two reference for the linked list
         //Slow Reference
         Node *slow=head;
         //Fast Reference
         Node *fast=head;
         //Iterate the Linked list using fast reference of the linked list
         while(fast->next!=NULL && fast->next->next!=NULL){
             //Update the slow pointer
             slow=slow->next;
             //Update the fast pointer
             fast=fast->next->next;
         }
         //Return the slow reference that contains the middle element of the linked list
         return slow;
     }
     //Function to sort the two halves of the linked list
     Node* sortedMerge(Node *left,Node *right){
         //Checking the base conditions
          if(left==NULL){
              return right;
          }
    
          if(right==NULL){
              return left;
          }
          //Creating a temporary reference to refer the sorted linked list
          Node *result=NULL;
          //Checking if the left reference data is smaller than the right reference data
          if(left->data<=right->data){
              //Update the result reference
              result=left;
              //Recursively call the left.next for next node
              result->next=sortedMerge(left->next, right);
          }
          else{
              //Update the result reference
              result=right;
               //Recursively call the left.next for next node
              result->next=sortedMerge(left, right->next);
          }
          //Return the sorted linked list
          return result;
    
     }
     //Function to perform the merge sort of the linked list
     static Node *mergeSort(Node* head){
         //Checking the base conditions
        if(head==NULL||head->next==NULL){
            return head;
        }
        //Getting the middle element
        Node *firsthalf=Middleelement(head);
        //Creating second half of the linked list
        Node *secondHalf=firsthalf->next;
        //Break the middle element reference
        firsthalf->next=NULL;
    
        //Recursively call the two halves of the linked list
        Node *left=mergeSort(head);
        Node *right=mergeSort(secondHalf);
        //call for the sorting
        Node *sortedList=sortedMerge(left,right);
        //Return the complete sorting linked list
        return sortedList;
    
     }
    
    
    int main(){
    //Creating Head of the linked list
    Node *head =new Node(11);
    //Creating Second node of the linked list
    head->next=new Node(10);
        //Creating third node of the linked list
    head->next->next=new Node(9);
      //Creating third node of the linked list
    head->next->next->next=new Node(9);
    //Printing Original Linked List
    printf("Original Linked List\n");
    
    print(head);
    head=mergeSort(head);
    printf("\n");
    //Printing Sorted Linked List
    printf("Printing Sorted Linked List");
    printf("\n");
    print(head);
    
    return 0;
    
    }

    Output:

    Complexity

    • Time Complexity : The Time complexity of this approach is O(nlog(n).
    • Space Complexity : The Space Complexity of this approach is O(1).

    Conclusion

    Merge Sort for Linked Lists is one of the most interesting problems of Data structure. In this article, we have discussed an approach to sort a linked list using Merge Sort. Sorting of linked lists is a little bit difficult due to the non-contiguous memory location of the nodes available in the linked list. But with little variation of the naive merge sort algorithm, we can easily sort the linked list desired order.

    We hope this article will help you to understand the problem statement and you will be able to solve any other variation of this problem.

    Happy Coding!

    People are also reading:

    Leave a Comment on this Post

    0 Comments