Top 10 Data Science Tools for 2021

By | October 5, 2021
Data Science Tools

Almost every one of us depends on the internet today and thus we share our data directly or indirectly with websites, apps, etc. WhatsApp, Facebook, Instagram, Google, Uber, etc. continuously mine user data to know more about them and provide them a better user experience. However, the user data collected by such apps and other online businesses is raw and available in huge quantities. Thus, it requires special processing of such data to extract meaningful information.

The processing and modeling of huge data to solve real-world problems are what Data Science is all about.

Vamware

Who Can Learn Data Science? 

Whether you are from a math background or not, whether you have worked with SQL or a programming language before or not, if you love to crack puzzles and can find links, patterns, and behaviors in unstructured data – data science is for you.

Data science can be performed with ease using different tools. There are various data science tools for programmers  (having good programming knowledge) and for business analysts (who may not have any programming knowledge). For example, Hadoop, Python, R, SQL, etc. are some tools used by programmers, whereas business analysts use tools like Rapid Miner, KNIME, PowerBI, etc. Learning at least a few of these data science tools will help you complete a considerable part of your data science learning journey.

Many tools like R, Python, RapidMiner, Tableau, Power BI help to automate various stages of data science, such as data preparation, data analysis, algorithm implementation, and data visualization. We will discuss different tools that you can use for each stage later in this article.

Apart from the ones mentioned in this article, there are many more data science tools available in the market, each having its own set of features and benefits, but these are the most popular, and learning them will never be a waste of time (ever!). 

Data science is vast and seems complex. But, if you break the whole process into sub-stages, you will notice that all you need is thorough technical knowledge and good organizational skills. Following are the different stages or key steps in data science:

  • Data collection and problem creation
  • Data wrangling (data munging or data preparation)
  • Machine learning and Data Mining
  • Data visualization
  • Generating potential business solutions

Best Data Science Tools

Each step in data science requires a different set of tools. In this section, we will learn about the best data science tools for accomplishing every single step efficiently.

Data Science Tools

1. Data collection and problem creation tools

Every business evolves through innovation. Let’s consider that you have started a simple ‘Dosa’ business, and after 2 years, you are still selling the same food items without any improvements. A competitor, who also started serving the same food items as yours added ‘Cheese Dosa’ or ‘Maggi Dosa’ to their menu will offer customers more options. Thus, they have better chances of attracting more customers. So, the key takeaway here is that constant up-gradation and innovation are essential for the success of a business.

But, how will you know what to do? It’s simple, you need to know your customers and their preferences better. 

Ask for feedback and suggestions from your customers, know how your competitors are doing, know if your employees are happy, and so on. Here are some questions that you can ask:

  • Why do people like my product? (Uniqueness) 

Maybe the chutney has that extra smooth texture and the subtle touch of homemade food.

  • Who are my customers? How can I increase my customer base? (Expansion)

Mostly office goers who stay away from home (let us say the age group of 25-35 years) and need quick bites, eat dosas. How about catering to college students and senior citizens?

  • Is there a target audience that does not like my product? Why? (Feedback)

Maybe the side dishes like chutney or spices aren’t liked by kids. How about including kid-friendly dosas, that have loads of cheese, fresh tomato sauce, and less spicy gravies? 

  • How can I improve my services to attract more consumers? What are my competitors doing?

Collect more data. The dosa seller on the next street has introduced a ‘customizable dosa’ platter; customers can choose how they want their Dosa. Figure out what special can you offer?

The essence of the entire problem-solution chain is the collection of relevant data and channelizing it to solve complex business problems.

How is data collected?

Data collected from each consumer is raw data. If you want to solve complex problems associated with your business, you need to collect data from many such consumers and process it. The huge collection of such data and its processing is termed Big Data.

Big data collection can be quantitative or qualitative, and you can deal with big data in many ways: 

  • Querying the existing internal database.
  • Purchasing external datasets that contain potentially useful information.
  • Conducting case studies and interviews.
  • Leveraging surveys, questionnaires, community forums, and feedback forms to gather required data.
  • Collecting data through CRM software and transferring it into a file with .csv or. xl format.

Data collection is important and it should be comprehensive. If not done properly, the analysis could be skewed, leading to results that are useless or ineffective for business.

What is Data Wrangling?

The raw data is not always perfect and you need to prepare it for further processing. The process of extracting useful details by cleansing and filtering relevant data and enriching it for further exploratory analysis is called data preparation or data wrangling. The quality of the final data totally depends on how you perform data wrangling.

Data Science Tools to Handle Big Data

Analyzing huge amounts of data is not possible unless you store and organize it properly. What you collect from different sources is raw data that has to be transformed and mapped into a more appropriate and usable format using a process known as data munging (or preparation or wrangling).

Querying the database and collecting relevant information becomes much faster with well-organized data. For example, you can collect data on how much sales your Dosa shop makes on a weekend vs during weekdays, what are the most popular items, what times of the day see more traffic/sales, and so on.

The most popular data science tools to handle big data are as follows

1. SQL

SQL

Using SQL to query and fetch data is the traditional and robust way and works well. SQL has a lot of features to filter, query, and fetch the records as required. However, it is costly and comes with a complex setup procedure.

2. MongoDB

mongodb

It is the most popular type of NoSQL that offers high performance and has a cloud-based infrastructure. The schemas are dynamic unlike in SQL, making it a great choice for data analysis.

3. Neo4j

neo4j

Neo4j is a big data tool that follows the structure of a graph database, i.e. storing graphs like demographic patterns, social networking issues, etc. It offers high availability and is scalable and flexible. Moreover, it supports graphs of the query language (Cypher).

Data Preparation or Data Wrangling Tools

It is essential to prepare data for analysis. For instance, there might be some information missing in the newly collected data or the existing data may be insufficient to come to a definitive conclusion. Raw data is extracted from the various sources and is then formatted, parsed, sorted, filtered, cleansed, arranged into appropriate data structures, and stored in the database or other storage systems for analysis.

Data Wrangling

As datasets are not usually in a perfect state, they can contain a lot of errors, your focus while cleaning and preparing data should be on answering just one question – What am I trying to learn or achieve by cleaning this data?

If that’s in your mind, the task becomes easier.

Following are the best tools for cleansing and data preparation:

1. Apache Spark and Hadoop

Hadoop

Apache Spark

 

Both Spark and Hadoop are open-source tools developed specifically to handle big data. Both offer impressive performance.

While Hadoop is a low-cost tool, Spark is faster than MapReduce used by Hadoop. Also, Spark can process data in real-time.

2. Microsoft Excel

Microsoft Excel

Information pre-processing is quite easy with Excel spreadsheets. You can use it for cleaning, filtering, slicing, and applying formulae on relatively smaller datasets. Also, Excel can seamlessly integrate with SQL. Excel is irreplaceable when it comes to analyzing and providing insights on smaller sets of data (not big data).

3. SAS Data Preparation

SAS Data Preparation

This is a great tool for non-programmers and it offers a user-friendly interface that allows you to perform tasks with a single click. The tool helps save a lot of time and improves your overall productivity. Also, it allows you to visually explore and load data sets from .csv, text, Hadoop, and other sources. SAS also lets you define templates that you can use later for another analysis. SAS is a costly tool and is ideal for business analysts working in large organizations.

4. Python

Python

Being the most popular programming language and data preparation or cleaning tool, Python cleans and transforms data quickly and efficiently. Python has an extensive library, known as Pandas, for data analysis and manipulation. There are many other features of Python that we will discuss further in this article.

5. Power BI

Power BI

Microsoft PowerBI is a self-service tool that helps you build a single repository by formatting, remapping, schematizing, and transforming received data. The final data is consistent and ready to use for further analysis. PowerBI uses dataflows to easily run the data preparation logic cutting down the time and cost for data preparation. 

6. Alteryx

alteryx

With Alteryx, you can perform data preparation visually. You can prepare data sources and cleanse, format, join, transpose, and enrich the datasets from the raw data in less time. This allows you to spend more time on analytics than on preparation. Alteryx is costlier than the other options that we have discussed so far.

7. Trifacta

Trifacta

Trifacta’s data wrangling software helps in self-service data preparation and exploration. The connectivity framework of the software connects various sources like Hadoop, cloud services, .cvs, .xml, .txt, or other files and relational databases securely and wrangles them to be used across platforms.

Data Transformation Tools

Data transformation and data wrangling are similar processes used in different contexts. While data wrangling is done by business analysts, executives, and non-technical professionals, data transformation (Extract-Transform-Load (ETL)) is done by skilled IT professionals who have been dealing with data for quite some time. 

In today’s businesses, ETL and wrangling go hand-in-hand. Companies leverage both so that data transformation is easy from the data source, and business executives can still have the flexibility to quickly check the insights they want. This approach gives better precision for critical projects. Some popular ETL tools are as follows:

1. Microsoft SQL Server Integrated Services (SSIS) 

SQL_SSIS

SSIS is a flexible and fast tool for data transformation, including cleaning, joining, and aggregating data. It can merge data from many data stores and standardize it. The tool offers great performance and can migrate over millions of records in a few seconds. 

2. Oracle Data Integrator 

Oracle Data Integrator 

With a nice graphical interface, ODI simplifies the data transformation process through its declarative rules-driven approach for a great performance at a low cost.   

3. SAS Data Integration Studio

SAS Data Integration studio

This visual studio is a part of the SAS tool for data science. It is a powerful tool that integrates data from multiple sources and also builds and visualizes the entire data integration process. 

4. SAP Data Integrator

SAP Data Integrator

SAP Data Integrator makes the process of data migration accurate and fast. Scalability is another plus point of this tool. Also, compared to other systems, SAP integrators can return answers to complex queries quite fast. It provides support for bulk-batch ETL and enhanced support for text processing. However, its price is a bit higher than other tools.

5. Matillion

Matillion

Matillion has been specifically developed for transforming cloud data warehouses. It can extract and load data from APIs, applications, SQL, and NoSQL databases. The tools can transform the data so that it becomes suitable to use with ML algorithms for deeper analysis.

6. Informatica PowerCenter

Informatica

Informatica is database neutral and hence can transform data from any source. It is a complete data integration platform that can perform data cleansing, profiling, transforming, and synchronization.

Exploratory Data Analysis (EDA) tools

EDA is a concept of statistics where you can analyze data sets obtain main characteristics, mostly using visual methods. It is like playing with the data and exploring it before applying any algorithms or models to it. EDA can lead to the formation of certain hypotheses that could be useful to understand if any more data collection is required for deeper data analysis.

Several graphical techniques are available for performing EDA, the most popular being scattered plots, histograms, box plots, multidimensional scaling, Pareto chart, and some quantitative techniques like ordination, median polish, etc. Some popular data science tools that provide a comprehensive way to use these techniques are as follows:

1. R and RStudio

Rstudio

R is one of the earliest and neatest tools that not only clean but also provides rich resources for data analytics. It works with all the operating systems and when combined with programming languages like C++, Java, or Python, its capabilities increase significantly. R is the perfect tool that provides extensive libraries for data cleaning, statistical computing, and analytics. You can use the commercial or open-source version of R. Also, RStudio is nothing but an IDE where you can write and run R programs quickly and efficiently.

2. Python

For the love of coding, you should choose Python. It has extensive libraries that can perform a lot of statistical (descriptive) analysis, correlation analysis, and simple modeling quickly. It is easy to find missing values, outliers, anomalies, and unexpected results in the data and then look at overall patterns and trends in a visual manner (like boxplot, scatter plots, histograms, heatmaps) using Python. 

3. SAS

SAS

SAS has powerful data analysis abilities and makes use of the SAS programming language. The tool is ideal for statistical analysis and can support many data formats. PROC UNIVARIATE in SAS provides various statistics and plots for numeric data. 

4. KNIME

KNIME

This is an open-source EDA tool based on Eclipse. KNIME is great for those who do not want to do much programming to achieve the desired results. It can perform data cleansing and pre-processing, ETL, data analysis, and data visualization. KNIME has been widely used in pharmaceutical and financial domains, and for business intelligence.

5. Microsoft Excel

For a regular chunk of data, Microsoft Excel provides some great insights, and you can look at data from various angles to make quick plots and pivot tables that are really helpful for quick analysis. Excel doesn’t need you to have any programming experience and you may have it on your system to do other office operations. Thus, you don’t have to spend any extra time, money, or resources to make use of Excel.

Machine Learning and Decision-making Tools

With good EDA tools, you will be able to perform qualitative analysis. On the other hand, algorithms and machine learning tools allow you to quantify the analysis and build a predictive model for your business. For example, with EDA, you know that the sales of paneer dosa were way less than that of masala dosa in the last quarter. But now we have to know ‘why’ through diagnostic analysis and then build a model that will determine how much the sales will be in the next quarter (read more about different types of analysis here).

There are several tools that help to employ different ML techniques, like linear regression, decision trees, naïve Bayes classifier algorithms, and others to understand why something went wrong. It then predicts the future based on both the past and present data. 

Below are the most popular machine learning and decision-making tools that you can use:

1. R & Python

When it comes to programming, R and Python are ruling the list of machine learning tools. Python’s easy syntax along with a host of libraries and tools are ideal for ML. Some Python tools for ML are Pattern, Scikit-learn, Shogun, Theano, and Keras. In the same way, R has a host of libraries and packages that make ML easier, such as e1071, rpart, igraph, kernlab, randomForest, trees, and many more. Check out the most popular ones here.

2. Weka

Weka is a collection of machine learning algorithms that you can apply directly to a dataset or call from your code. It contains tools for data mining tasks, including data preprocessing, regression, classification, clustering, and association rules. It has a neat GUI that will help beginners to understand machine learning effectively. Also, you use Weka in combination with R (RWeka).

3. RapidMiner

RapidMiner

Rapid miner is among the most popular tools that support all the data science steps, including data preparation, machine learning, deep learning, text analytics, model validation, data visualization, and predictive analytics. RapidMiner is available for both commercial and educational purposes like research, training, and education. You can design models using a visual workflow designer or automated modeling. Also, you can easily deploy, test, and optimize the model for insights and actions. Some older versions of RapidMiner are open-source.

4. H2o

h2o

It is an open-source, distributed ML tool that is scalable, flexible, and suitable for linear models and deep learning algorithms. H2o’s compute engine provides end-to-end data science services, such as data preparation, EDA, supervised and unsupervised learning, model evaluation, predictive analysis, and model storage.  The tool offers complete enterprise support to boost the deployment process, making AI development fast and easy.

5. MATLAB

MATLAB

MATLAB is a simple yet powerful tool that is easy to learn. It is used for plotting data and functions, manipulations of matrices, implementation of algorithms, and creation of user interfaces. If you are an engineer, you may have written some MATLAB programs during your college days. Also, it is essential for you to noted that if you have prior knowledge of C, C++, or Java, learning and implementing ML algorithms will be a breeze for you. 

6. DataRobot

DataRobot

DataRobot is yet another powerful automated machine learning tool that allows you to prepare datasets, drag and drop elements to apply models and algorithms, build and retrain the applied model, and make accurate predictions and insights. It is being extensively used in domains like healthcare, finance, banking, public sector marketing amongst others. It can also use libraries from R, Python, and H2o for even faster and more accurate results.

7. TensorFlow

TensorFlow

TensorFlow is a free and open-source library designed by the Google Brain team. Google initially used it internally but made it open-source later. Tensor Processing Unit, built by Google works beautifully for TensorFlow and is specifically suited for machine learning. With both these combined, you can develop and train complex ML models, iterate and retrain the models and quickly make them ready for production. Other than Google, Airbnb, Coca-Cola, Intel, and Twitter are some big names that use TensorFlow.

Data Visualization Tools

Okay, so we applied our analysis, created a model, and trained it. Now, what’s next?

We need to present the information that we have gathered in some form that is easily understandable. This is where data visualization comes into the picture. The insights, patterns, and other detected relationships among data are graphically presented so that business analysts and other stakeholders can make informed business decisions.

We can retain complex information in our memories for a longer time when it is in the form of pictures and visuals rather than text. Data visualization engineers need to be adept in mathematics, graphics, statistical algorithms, and visual tools. Also, they should know what tools are ideal to use in different business scenarios.

For small sets of data, like for daily sales reports or employee leave information, tools like Excel are good enough. However, for big data and commercial products with complex data, you need to make use of some popular tools like Tableau, PowerBI, D3, FineReport, etc.

Following are the best data visualizations tools:

1. Tableau

Tableau

With Tableau, you can just drag and drop elements to create visualizations. Also, the visualizations that you create are in the form of dashboards and worksheets. While it is majorly used for visualization, Tableau can also perform data preparation. Also, Tableau is faster than Excel and it can integrate with different data sources to directly create charts, reports, and dashboards. There are no programming skills required to work with Tableau.

2. QlikView

QlikView

Qlik is a BI tool just like Weka, RapidMiner, etc. that can perform end-to-end data science processes like data integration, data analysis, and data visualization. QlikView is a powerful tool for data visualization that gives insights in the form of dashboards. With QlikView, you can enhance reporting efficiency by more than 50% and get more time to focus on more important business tasks.

3. D3

D3

D3 is an open-source JavaScript library that can create interactive and dynamic data visualizations on web browsers using HTML, CSS, and SVG (Scalable Vector Graphics). It is flexible, fast, easy to use, modular, and supports large complex data sets. The DOM manipulation methods that D3 uses are data-driven.

4. ggplot2

ggplot2Hex

ggplot2 is a data visualization package created for R. It is an enhancement over the basic graphics provided in R; data can be transformed into many layers to provide powerful charts. A similar plotting system is available for Python and is known as ggplot. Both ggplot and ggplot2 require minimal code to generate professional-looking graphs quickly.

5. FineReport

You can create beautiful visualizations using this tool that has over 19 categories and 50 styles to represent data in various ways. The dynamic 3D effects are interactive and help business users understand the insights quickly and accurately. FineReport gives a rich display of graphical information and geographic information making it a great choice for complex business problems.

Summary

Are you overwhelmed with the above list of tools? Worry not! Let me tell you a secret – 

If you are a programmer, start with R or Python, and then move on to other automated products that make your life simple. If you are not a technical person, start with Microsoft Excel, Tableau, and Weka. Remember that these tools are to help you, not confuse you. Many of these have a free version, so before choosing one, you can play around with some and then decide which one is most suitable for your specific requirements. 

People are also reading:

Leave a Reply

Your email address will not be published. Required fields are marked *