What Is Python Used for? A Beginner's Guide

Posted in /  

What Is Python Used for? A Beginner's Guide

Vinay Khatri
Last updated on April 16, 2024

    Right now, all the popular software service companies like Google, YouTube, Instagram, Spotify, and Reddit use Python for their live projects. Despite being the slowest programming language, It is the most popular programming language of 2020, and you can tell this by the use of Python in various domains.

    What Is Python Used for?

    Created by Guido Van Rossum, python small learning curve, clear syntax, pretty indentation and thousand of open source libraries has made Python one of the best programming language for all level of developers. The high demand for python developers in the IT industry is also helping in the rapid growth of the python community. If you are new to Python, learning basics and wondering about What can I do with Python? or, what is python good for? or, what can python be used for?. So, here in this article, we have covered all the significant domains where Python is actually used, and we have also mentioned the python libraries or tools you need to master if you want to seek a career in a specific field. So, without further ado, let's discuss the significant domain where it is used.

    Domains where it can be used:

    • For web-development
    • For IoT (Internet of Things)
    • For Machine Learning
    • For startups
    • For Fintech.

    1. Python in Web Development

    Right now, every organization has a website that expands its reach on the online market and provides company existence over the internet. Creating, managing, and deploying a website or web-application comes under Web-development, and using the Python frameworks , we can create a robust and reliable web application for various devices.

    Web project that can be built using Python:

    • App for mobile and desktops.
    • API's
    • Responsive Web-applications.
    • AI and ML-based Chatbots.


    Generally, It is used to write the backend script for web-applications, but there are some python frameworks that support full-stack web development.

    • Open-Source Libraries : It has a myriad of open-sources libraries, and these libraries can be used to build efficient and responsive web-applications.
    • Clean Syntax : It provides a simple and natural syntax for the creation of dynamic applications. Even the python libraries follow the modules approach, which increases developer productivity.
    • Faster Development : It is straightforward to write python code, and within less time and code, we can create a well and proper application. That's one of the main reasons why startups prefer Python over other languages.
    • Inbuilt tests : It also comes with open-source third-party testing libraries, which can be used to test the performance and reliability of the applications. Popular web-frameworks like Django comes with inbuilt module test.py for testing purposes, so you do not need to install different tools for your python code.

    Top Python Web-Frameworks

    A web-framework is a collection of libraries that is used to build dynamic web applications. However, we can create a web application using individual libraries, but web frameworks make it easier and faster.

    • Django: Django is the most popular and widely used python framework. It is a full-stack web framework that comes with many built-in features such as admin authentication and verification. Django is highly recommended for big and medium-size projects, if you are building small projects like a to-do list or single page web applications, then Django would not be a great choice. Django also provides a built-in library for application testing, which is an extension of the python unit test library. You can read our detailed article about what is django? It's advantages and disadvantages .
    • Flask : Flask is the second-best python web-framework, but in some index rankings, it overcomes Django. If we compare Flask with Django, Flask is lean toward the small or micro size web-applications, and it often suggests to learn Flask before moving to Django. It is a micro web framework, and here we do not get built-in features like Django, but we can create all those features from scratch. Unlike Django, in Flask, we have to depend on other libraries and install some tools to build a high-quality web application.
    • Bottle : The bottle is another light-weighted python web-framework that is widely used for learning and educational purposes. The bottle also does not offer too many built-in features, but it is mostly dependent on the Python standard libraries. It is an excellent framework for prototyping and building small and personal web applications. Here you do not need to worry about the nitty-gritty of various file creation while creating an app.
    • Pyramid: The pyramid is a merger of two old python web-frameworks, Pylons and repose.bfg. And there was a time when pyramid was top python frameworks. In a direct comparison with Django, then pyramid has some significant advantages such as it is very easy to customize and build complex apps with ease.

    2. Python for IoT

    IoT is one of the buzzwords of 2020, like Artificial Intelligence and Machine learning. If we want to define IoT in a nutshell, we can say that it is a concept about embedded physical objects which can connect with the internet for communication purposes. Now every IoT device comes with a unique IP address that allows it to communicate with the network. These days we can see a rise in IoT devices usages, and the time is not so far when every house will become a smart house and every office a smart office.  IoT devices also play a vital role in cyber-systems, Machine Learning, and big data, with the help of wireless networks and sensors.

    You can also read: What is IoT Security?


    Generally, in IoT's we require those programming languages which are fast, light-weight, close to the hardware, and scalable. However, Python is neither quick or close to system hardware, but it still used in IoT because of its popularity, versatility and Raspberry Pi.

    • Python Libraries : It has broad community support, and it has thousands of libraries. You name the IT domain, and Python has a library for it. With so many libraries present in Python arsenal, it's become effortless to use Python with anything.
    • System Independent : It is portable and expendable, and its code can be run on any system or embedded devices. Right now, Python is supported by many operating systems and single-board computers which help python code to execute embedded systems.
    • Manage Complex data : It comes with many built-in robust data structures that are capable of handling and organizing complex data collected by the system.
    • Easy to learn : It is straightforward to learn basic Python, and that's one of the underlying reasons why Python is so popular. In Python, you do not need to worry about system formatting and compiling options python cover all and much more for you.
    • Easy syntax and less code: It has a beautiful syntax which makes it's code more readable and clean. Python comes very handy for small devices where memory is limited, and we want to write the script with minimum lines of code.
    • Python with data science : Currently, Python is widely used for data science and big data, because there are some data science and AI libraries which are only available for Python. Now data has become as valuable as money, and these smart IoT devices have become data collectors for big firms. So now they require such programming language in their IoT systems which can deal with the data flow.
    • Raspberry pi : Raspberry pi is a popular microcontroller embedded device which is used for research and education purpose, and by default, it uses Python as its programming languages.
    • Easy Debugging : It is an interpreted language that reads and executes code line by line, and if there is an error, the code execution stopped at the error line which makes debugging the program easy.
    • AWS support for Python : AWS provides Python SDK for its devices, which helps python developers to write such scripts which allow them to access the AWS IoT devices.

    Tools for Python in IoT

    • Raspberry pi : Raspberry pi is a small-single bord computer, widely used for teaching and research purposes of basic computer science in schools and colleges. It is highly portable and cheap, which makes it more popular among researchers and robotic developers. However, it does not come with any peripheral device like a monitor, keyboard, mouse, etc., but you can connect them separately to its USB and HTML ports. Raspberry pi is like a small and portable CPU that fits in your pocket. Raspberry has been used for many IoT projects because it comes with a Linux distro which makes it faster and more secure. Unlike other computers, system raspberry can run on little energy and support python as its default programming language . Projects that can build using Raspberry pi
      • Retro games.
      • Robot controller
      • A small web-server.
      • Chatbots
      • mini desktop.
      • Security systems.
      • Testing machine
    • MicroPython : It is an electrical circuit commonly known as plyboard. It is a tiny hardware device that comes with the implementation of Python 3 programming language with all the standard and popular Python libraries. It is capable of running python3 programs and controlling all kinds of electronic devices. It provides 256k space for code and runs the program using 16k of RAM. The main objective of MicroPython is, to provide a fully-fledged python compiler and runtime environment. Like Raspberry pi, MicroPython also does not come with any peripheral or O/I devices, but it includes USB ports and micro Sd slots to read and show Python code and its output.
    • Zerynth : Zerynth is specially designed for IoT and cloud computing. It is a 32-bit micro-controller device that comes with the latest version of python 3. Zerynth is a software inside the micro-controller, and it is written in C and Python. It is capable of set a connection to servers or clouds for the development of IoT devices. Zerynth deal with the low-level configuration and programming which make it compatible with other small electronic devices. Zerynth comes with a multi-thread stack-based virtual machine which is capable of executing Python bytecode. Like other python IoT devices, Zerynth provides 80kb of code storage and 5 kb of RAM to run the code.
    • Home Assistant : It is an open-source Python project by the worldwide community of tinkerers. If you want, you can install and run it on your local server and Raspberry pi system. It helps in automation without compromising with user privacy. Generally, IoT and controlling devices are done with could computing, but with the Home assistant, you can manage your device using a local server or raspberry system, and here you do not need to connect with the cloud.
    • Desktop and IoT programming : IoT programming can also be performed using desktop as well, but micro-controllers prefer a better choice here. They are portable, consume less energy, and very close to hardware which allows them to connect and control with an electric device. However, for big projects, desktops are preferred for IoT programming, because they can provide more memory space and resources to the project. Micro-controller like raspberry pi and MicroPython is an excellent choice for research and educational purposes, but for big projects, it's always a good idea to use high-end systems.

    3. Python in Machine Learning

    It is doing great in Machine learning and Data science domains. AI and ML have hyped Python in the last few years, which also surged in python developers. Currently, many big tech firms such as Google, IMB, Netflix, and Amazon investing millions of dollars in their machine learning projects, and here Python standing as one of the front-line programming languages.


    • Machine and Data Science libraries : Libraries are the main assets of Python, and It has libraries for every computer science domain. It has many open-sources and third party numerical computational libraries which heavily used by ML engineers for machine learning models.
    • Simple Syntax : Machine Learning algorithms are already complicated, so we require such programming language which can implement it with ease, and here Python serves this purpose.
    • Integration with other Programming languages : It can be easily integrated with different programming languages; there are various python compilers that could do that.

    Top Python Libraries for Machine Learning

    It is well known for its machine learning and data science libraries, except R programming language, It has the highest number of libraries for data science. Here are some of the python libraries you must know if you seek a career in Machine Learning as a Python developer.

    • Scikit-Learn : Scikit-learn is one of the most popular and influential pythons machine learning libraries. It is built using two other numerical computational python libraries "SciPy" and "NumPy", which means you get full support for all the mathematical computation in Scikit-Learn. Apart from mathematical computation, Scikit provides all the essential machine learning algorithms such as regression, clustering, classification, pre-processing, model selection, dimensionality reduction and much more. As a machine learning library, it provides modules for data mining and data analysis for simple and complex data science models.
    • TensorFlow : It is a well-known powerful library developed by Google, and it is only available for 2 or 3 programming languages. It comes with very advanced modules with robust numeric computation. Google itself uses this library for his machine learning and neural network projects. It is maintained by Google, and they release it updates in a regular interval of time. Its flexibility and high-performance architecture make it a powerful tool for numerical computation. Apart from Google, many other companies such as Dropbox, Uber, eBay, Snapchat, and Coca Cola use it too.
    • Nilearn : Like other python data science and machine learning libraries, Nilearn is also a robust and fast library. It is highly recommended for statistic and neuroimaging data. This library is built on scikit-learn, which give it a head-on over scikit. In Nilearn, we get various inbuilt machine learning algorithms for pattern recognition, predictive modelling, collective analysis and multivariate statistics.
    • mlpy : mlpy library stands for Machine Leaning python, and this library is specially designed for machine learning using python 3 and 2. It is built on other popular python libraries such as NumPy, SciPy and other GNU scientific libraries which promise high performance in supervised and unsupervised machine learning problems. mlpy provide various methods for regression, classification, Linear Discriminate analysis, clustering, dimensionality reduction and much more.

    What problems can we solve using python Machine learning libraries?

    There are three major types of machine learning problems, and using python libraries can solve all those problems.

    • Supervised Learning : In supervised machine learning the model work on a provided data set, and here we already know the output. Supervised learning can be performed using two main techniques "Classification" and "Regression".
      • Classification : In the classification technique, the model categories the data into different phases and classes, then predict the output of a discrete value.
      • Regression : In regression, the output is predicted by the closest value from the continuous data set. Python libraries are capable of solving all the major supervised problems using these techniques. Here is the list of all the major libraries which are used for supervised machine learning problems.
        • TensorFlow
        • Keras
        • Caffe2
        • catBoost
        • scikit-learn
    • Unsupervised learning : In unsupervised learning, the algorithms have to solve the problem by its own because here data is unlabelled and not trained although outcome been provided. In unsupervised learning, we use clustering and matrix factorization to tackle and solve the problems. Here is the list of essential libraries used for unsupervised learning.
      • PyTorch
      • LightFM
      • Surprise
    • Reinforcement learning : Reinforcement learning works on feedback; here, the algorithms modify itself and try to make the right decision on previous outcomes and feedbacks. Reinforcement problems often seem complicated and challenging, but in Python, we have libraries to tackle those problems.
      • Keras
      • TensorFlow
      • Coach

    4. Python in Startups

    In startups, we have to build projects from scratch, and there we require such programming languages that can deliver quick and efficient results. There are many companies which start their projects using Python, let's take Instagram as an example, Instagram is entirely written on Django, that proves that for startups and new projects we can ultimately depend on Python.

    Why choose Python for startups?

    There are many reasons why it should be your first choice for your startup. The community is the primary reason why to choose Python, and a strong community always come helpful when you get stuck somewhere while writing the code. Finding a python developer is also very easy; it's not like that it has limited developers, post a job you will find hundreds of professionals whom you can work. It is also very scalable, which means it can be easily integrated with other popular technologies, so with time, you can quickly move your project from one platform to another.

    Prominent Python Startups

    Here is the list of top startups that used Python as a core programming language.

    • 21 Buttons : It is a European based fashion social network website, which has an active user base of 6 million bloggers and influencers. This social network website is entirely built on Python and some of its popular frameworks like Django and Flask. Twenty-one buttons allow you to share fashion and clothing related designed with fashion enthusiasts.
    • Deuce tennis : It is a sport-related social platform where you can find the near tennis courts and clubs. Using this platform, you can check if any courtyard or coach is free to play. This platform also provides tennis coaching and playing facility at affordable pricing. Deuce tennis is also built on Python; however, it also uses a popular JavaScript library "react", which make this platform very elegant for booking tennis session and courts.
    • TravelPerk : It is a travel booking platform that also built on Python and reacts. It is one of the high startups which print many headlines in newspapers of Barcelona. This platform is ideal for those businesses that send their employees on a field trip for business purposes.
    • Zappi : Zappi is like an administrator and social platform for schools, using zappi a school administration can search for the substitute's teachers. It is a revolutionary platform built on Python, which also helps the school administration to store and manage the database.  It makes the tedious process of finding new staff for the school easy. Zappi is now available on mobile devices so teachers can apply easily for schools, and the administration can look for teachers from the web-app.

    5. Python in Fintech (Financial Technology)

    It is one of the oldest players in programming languages, although it has gained popularity in the last 6 and 7 years, still, it is used in many Financial technical applications. If you want to create a fintech project, then you can opt for Python as a core programming language because it is the fastest-growing programming language and provide high performance with high scalability.


    It offers many features and solutions for hedge funding and investment banking, which make it an ideal choice for fintech.

    • With Python, we can create risk and trade management platform.
    • Python numeric and statistic libraries can be used to solve the quantitative rate problem.
    • Python libraries can also be used to regulate, compile, and analyze the data generated by the firms.

    Why should Python be the first choice for fintech software and applications?

    • Simple Syntax : It has a straightforward, smooth, and clean syntax, just by looking at the code you can tell what the program is supposed to do. The simple and natural syntax helps the developer to get quickly acquainted with the program terminologies and operations.
    • Agile development : It is a dynamically typed programming language, and within fewer lines of codes, we can write our logic and create a robust application.
    • Powerful Libraries : It has a large number of third-party libraries that are best suited for fintech applications. Libraries help in code automation and reduce the size of the complete program, which makes the program more reliable and reduces the bugs and errors.

    Fintech using Python

    There are many financial, technical companies in the market which use Python in their applications and tools.

    • Venmo : It is a "social media network" cum fintech startup; it allows its users to move money around by liking online banks, credit card and debit card. The backend of Venmo is entirely written on Django. Venmo provides an efficient way to split and pay bills. Initially, Venmo was owned by Braintree but now in 2013 PayPay brought it for $800 million. The popularity of Venmo can be estimated by its staggering $8 billion payments in 2017 only.
    • Newable Business Finance : Newable is a loan providing service, which is an alternative way to get a loan if banks are not giving you business lone. With Newable, you do not worry about the tedious paperwork and bureaucracy printed documents, here you just need to fill an online form, and you can get a quick business loan. Newable is a perfect example of python quick development feature; developers created and delivered this application within two months.
    • Zopa : Zopa platforms connect the borrower directly with the lenders and cut out the middle man. If you want a business loan, you can use this platform and find an ideal lender for your business who can fund you at a reasonable interest rate. In 2018 only, Zopa crosses the 3 million euros in lending, and become the most popular platform for peer-to-peer loan service. Now Zopa is about to open its own digital bank, which signifies its growth and platform trust. It is built on Python, Java, and C#, which make it a high-quality application because all the powerful and popular programming languages have been combined to create one platform.
    • Vyze : It is one of the leading fintech company which also provide lending services to funds new startups and business models. Here, the business model does not matter; you can apply for both small and big business loans. In vyze you get the best and satisfying solutions for your finance.


    Python has many other applications, all the use cases we have provided here are the major ones, apart from these domains, there are many other things what you can do with Python. Python coding allows you to create different types of Python software from console-based Python software to Python scripted web applications. There are thousands of libraries in Python that expand the Python uses amongst its developers and communities, find the best Python libraries for your domain and you will find your answer on what can you do with Python. Web development, Machine-learning, data science, startups and fintech are some prominent domains where you can easily find a job as a Python Developer. You need to learn the additional tools if you want to land a job in a specific domain, core python is just a starting phase of python development, for a real job you need to master at least one primary tools or framework.

    People are also reading:


    Python is a general-purpose programming language for developing software and web applications, games, image processing, text processing, data visualization, data analysis, and task automation.

    Yes, Python is an easy-to-learn language as it has a simple and elegant syntax. It eliminates the need for using delimiters and uses indentation to make code readable.

    Learning Python offers a lot of benefits. You can find a lot of job opportunities in different domains, including web development, artificial intelligence and machine learning, and data science.

    As Python is an easy and simple language, it takes around 6 to 8 weeks to learn and master all the concepts of Python. To be fully proficient in the language, you need to develop multiple projects and get hands-on experience.

    Python is popular because it has a simple syntax, is a versatile language having multiple use cases, and has a large community of experts.

    Leave a Comment on this Post